twistpy.polarization.SupportVectorMachine#

class SupportVectorMachine(name: str)[source]#

Support vector machine for wave type classification based on six component polarization analysis.

Used to train and classify wave types via 6-C polarization analysis. This class merely exists for convenience. The core functionality of this class inherits from sklearn.svm.SVC.

Parameters
namestr

Name of the support vector machine

Methods

load_model()

Loads a previously trained support vector machine from disk.

train([wave_types, N, scaling_velocity, vp, ...])

Train support vector machine with random polarization models from the specified parameter range.

Examples using twistpy.polarization.SupportVectorMachine#

6-C Polarization Analysis: Time-domain wave parameter estimation

6-C Polarization Analysis: Time-domain wave parameter estimation

6-C wave type fingerprinting

6-C wave type fingerprinting

Six-component dispersion analysis

Six-component dispersion analysis